Two-Phase Thermal Control Technology for Small Spacecraft Exploration

NASA

Completed Technology Project (2015 - 2016)

Project Introduction

The challenge of this task is to provide an order of magnitude reduction in thermal control power using half the mass while accommodating high heat fluxes and milli-Kelvin stability required for enhanced science.

This task will develop a 2- ϕ mechanically pumped fluid loop thermal control system for small spacecraft that minimizes system resources, manages spacecraft temperatures, reclaims and redistributes waste heat, and provides science-enabling thermal stability.

Anticipated Benefits

This technology •Provides order of magnitude reduction in TCS power and 50% reduction in mass over current state-of-the-art. •Accommodates high heat fluxes up to 5 W/cm²; isothermalization of < 2 °C over a 1-m payload bench; temporal stability of < 0.05 °C/minute. •Modular, scalable, configurable to enable integration and at reduced costs. High degree of control authority results in less thermal vacuum testing time.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California

Project Image Two-Phase Thermal Control Process

Table of Contents

Project Introduction	
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	
Images	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Independent Research & Development: JPL IRAD

Center Independent Research & Development: JPL IRAD

Two-Phase Thermal Control Technology for Small Spacecraft Exploration

Completed Technology Project (2015 - 2016)

Primary U.S. Work Locations

California

Images

Two-Phase Thermal Control

Project Image Two-Phase Thermal Control Process (https://techport.nasa.gov/imag e/26098)

Project Management

Program Manager:

Fred Y Hadaegh

Project Manager:

Fred Y Hadaegh

Principal Investigator:

Eric T Sunada

Technology Maturity (TRL)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - - Rejection and Storage

